The r - cubical lattice and a generalization of the cd - indexRichard EHRENBORG and Margaret
نویسندگان
چکیده
R esum e Dans cet article nous etudions des questions extr emales pour le treillis r-cubique. Pour cela, nous g en eralisons l'index cd du treillis cubique a un index r-cd, que nous appellons (r). Les coeecients de (r) d enombrent les permutations d'Andr e r-sign ees augment ees, g en eralisant d'une mani ere naturelle les r esultats de Purtill qui mettent en rapport l'index cd du trellis cubique et les permutations d'Andr e. Le nombre de permutations d'Andr e r-sign ees augment ees est donn e par une fonction g en eratrice trigonom etrique. Nous d eterminons les conngurations extr emales maximisant la fonction de MM obius sur les ideaux rang-s electionn es. Nous prouvons egalement que la connguration extr emale maximisant la fonction de MM obius pour les s elections de rangs arbitraires est le syst eme des rangs alternants impairs, Abstract In this paper we study extremal questions for the r-cubical lattice. To do this we generalize the cd-index of the cubical lattice to an r-cd-index, which we call (r). The coeecients of (r) enumerate augmented Andr e r-signed permutations, a natural generalization of Purtill's results relating the cd-index of the cubical lattice and Andr e permutations. The number of augmented Andr e r-signed permutations is given by a trigonometric generating function. We determine the extremal conngurations for maximizing the MM obius function of rank-selected upper and lower order ideals. Also we nd the extremal connguration which maximizes the MM obius function of arbitrary rank selections is the odd alternating ranks, f1; 3; 5; : : :g.
منابع مشابه
The r-cubical Lattice and a Generalization of the cd-index
In this paper we generalize the cd -index of the cubical lattice to an r cd -index , which we denote by Õ ( r ) . The coef ficients of Õ ( r ) enumerate augmented Andre ́ r -signed permutations , a generalization of Purtill’s work relating the cd -index of the cubical lattice and signed Andre ́ permutations . As an application we use the r cd -index to determine that the extremal configuration wh...
متن کاملThec-2d-Index of Oriented Matroids
We obtain an explicit method to compute the cd-index of the lattice of regions of an oriented matroid from the ab-index of the corresponding lattice of flats. Since the cd-index of the lattice of regions is a polynomial in the ring Z(c, 2d), we call it the c-2d-index. As an application we obtain a zonotopal analogue of a conjecture of Stanley: among all zonotopes the cubical lattice has the sma...
متن کاملFlags and shellings of Eulerian cubical posets∗†
A cubical analogue of Stanley’s theorem expressing the cd-index of an Eulerian simplicial poset in terms of its h-vector is presented. This result implies that the cd-index conjecture for Gorenstein∗ cubical posets follows from Ron Adin’s conjecture on the non-negativity of his cubical h-vector for Cohen-Macaulay cubical posets. For cubical spheres the standard definition of shelling is shown t...
متن کاملOn Flag Vectors, the Dowling Lattice, and Braid Arrangements
We study complex hyperplane arrangements whose intersection lattices, known as the Dowling lattices, are a natural generalization of the partition lattice. We give a combinatorial description of the Dowling lattice via enriched partitions to obtain an explicit EL-labeling and then find a recursion for the flag h-vector in terms of weighted derivations. When the hyperplane arrangements are real ...
متن کاملCharacterization of the factorial functions of Eulerian binomial and Sheffer posets
We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996